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Abstract—ZigBee is a robust wireless communication standard managed by the ZigBee Alliance 
and based on the standard IEEE 802.15.4 physical and MAC layers. Certain applications of 
ZigBee, may be critically limited by its designation as a low data rate standard. This paper 
describes a three-phased approach for measuring and attaining maximal throughput in a ZigBee 
wireless network. The phases consist of: 1) practical calculations, 2) NS-2 simulations and 3) 
hardware implementations on Ember Corporation EM2420 based development equipment. The 
first two phases provide an approximate practical upperbound of 120kbps. The final phase is 
targeted to realizing maximal throughput in an actual hardware implementation. The results 
reveal maximum throughput for a ZigBee wireless network reaches 110kbps for well-refined 
hardware designs. Finally, a set of desirable traits is presented for future ZigBee hardware designs 
concerned with achieving maximum network throughput. 

I. INTRODUCTION 

The initial version of the ZigBee networking standard, published in 2004, met the goal of creating a 
reliable, cost-effective, low power, wirelessly networked monitoring and control platform targeted to 
home, business and factory automation applications. A typical application used to explain ZigBee’s 
functionality is a light switch panel and various lights distributed throughout a home [1]. A ZigBee 
compliant radio and microcontroller is present at the light switch panel and each wirelessly controlled 
device. The ZigBee standard enables the light switch panel to dynamically discover new controllable 
devices, even of different manufacturer, and send pre-defined commands (on, off, dim) to those devices 
by utilizing ZigBee Alliance approved profiles. Each ZigBee Alliance approved profile describes the 
network configuration parameters and message formats necessary for devices of similar interest, e.g. 
lighting control, to communicate successfully. ZigBee can handle larger applications because of its multi-
hop routing capabilities. If the device to be controlled is out of the reception range of the light switch, 
then other intermediate light switches or networked lights will cooperate to route packets to the final 
target. 

A complex application becoming popular is a commercial/industrial wireless sensor network (WSN) 
used to monitor environmental operational conditions. Wireless sensor networks consist of a deployment 
of many independent data sensing nodes. Each sensing node is equipped with a radio transceiver and 
microcontroller capable of preliminary data processing and controlling wireless communication. These 
nodes are often deployed with a battery as their energy source so it is crucial that energy be used 
conservatively. Topologies of WSNs may change as nodes fail or relocate. Therefore, it is desirable to 
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have networks capable of adapting to network topology changes by supporting redundant mesh 
topologies. ZigBee is an ideal communication standard for WSNs because it is built on the power-
efficient IEEE 802.15.4 specification and has a multi-hop routing algorithm capable of adapting to link 
failures while minimizing communication power consumption [1].  

Event monitoring WSNs may detect conditions that cause demands for large amounts of data be 
quickly transferred through the network. Information from all sensors that detect an event may be crucial 
for end systems to determine the location and severity of the event, thus packets cannot be lost. Low 
latency is required where WSNs are part of control networks because an event representing an emergency 
must be quickly relayed to network egress points so that control measures may be dispatched to suppress 
the emergency. These heavy traffic patterns necessary for some WSN applications may not be feasible 
because ZigBee is based on the low data rate (up to 250kbps) IEEE 802.15.4 standard. Congestion, data 
framing and interference all contribute to a further decrease in the available throughput in ZigBee.  

In order to measure throughput performance, this paper is organized in the following manner. Section 
II discusses background information about ZigBee, IEEE 802.15.4, and their general interactions. Section 
III illuminates a specific inefficiency in IEEE 802.15.4 and its impact on ZigBee. Section IV quantifies 
application throughput with a practical estimation based upon varying channel activity levels. Section V 
confirms the simulation platform’s accuracy and simulates maximal throughput experiments. Finally, 
Section VI describes the software and hardware architecture necessary to realize near maximal 
throughput in a hardware implementation.  

II. ZIGBEE MESSAGING OVERHEAD 

Version 1.0 of the ZigBee specification is built on the IEEE 802.15.4-2003 standard PHY/MAC layers 
for low rate wireless personal area networks (WPANs). The PHY/MAC layers provided by the 802.15.4 
standard facilitate network formation, management, node addressing and transmission scheduling among 
wireless nodes by concatenating extra headers with outgoing data frames [2]. Although the preamble and 
start frame delimiter segments transmitted by the PHY layer are not headers containing data in the typical 
sense, they require a finite amount of airtime for every frame’s transmission so they shall be considered 
part of the header for simplicity. The IEEE 802.15.4 standard constrains the maximum packet size to 133 
octets by dictating the maximum physical service data unit length (largest data unit handed down from 
MAC) is equal to 127 (aMaxPHYPacketSize ) octets. The remaining 6 octets correspond to the overheard 
of the preamble, start frame delimiter and frame length field that are prepended to the packet. In total, 
PHY/MAC headers occupy 17 octets of overhead in each data frame of the format depicted in Figure 1. 
Overhead added by the MAC layer is subject to change due to variable length addressing functionality. 
This occurrence is discussed at detail in Section III. 

ZigBee implementations add three additional headers to the outgoing data frames to perform the 
following services. The ZigBee network (NWK) layer provides services for devices to join and leave a 
network, apply security to data frames and discover and maintain routes between devices. The ZigBee 
application services (APS) layer provides functionality necessary for devices to maintain bindings, which 
are device groupings based upon application communication needs. Finally, the ZigBee application 
framework (AF) layer identifies a device’s potential services as dictated by a given AF profile. In total, 
ZigBee headers occupy 15 octets of overhead for each data frame. The complete IEEE 802.15.4 and 
ZigBee frame structures are depicted in Figure 1. 
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III.  PAYLOAD LIMITATION IN IEEE 802.15.4-2003 

The IEEE 802.15.4 standard incorporates two device addressing modes, commonly referred to as short 
addressing and long addressing. Long addressing consists of a 64-bit hardware address unique to every 
802.15.4 radio transceiver while short addressing is 16 bits and assigned to a node after joining a given 
network. Since the IEEE 802.15.4 standard is for low data rate PANs, short addresses are favored. To 
accommodate addressing by means of short or long address the MAC layer header designates address 
fields to be of 0, 2, or 8 octets in length. Once a short address has been assigned, the IEEE 802.15.4 
standard specifies that if the source’s short address is known when sending a packet, the sender shall 
stamp the packet using its short address in preference to the long address [2]. Similarly, the same applies 
when addressing a packet with the destination’s address. Thus in a ZigBee network where short addresses 
are known, 4 octets (2 16-bit short addresses) out of a maximum of 16 octets (2 64-bit long addresses) are 
utilized by the MAC header for device addressing. 

In certain instances, a device is a member of multiple PANs or multiple PANs operate within the same 
region. IEEE 802.15.4 MAC layer accommodates this through two specified fields: source PAN ID and 
destination PAN ID. Collectively, these allow devices to reject messages that are not of local interest. 
Each of these 16-bit fields may be optional. Specifically, the IEEE 802.15.4 standard designates that if 
the source and destination PAN ID are equal and the PAN ID compression sub-field within the frame 
control field of the MAC header is set then the source PAN ID is dropped and only the destination PAN 
ID is present. Thus, MAC header length varies. In a single PAN ZigBee network only the destination 
PAN ID is in outgoing packets, thus two out of a maximum of four octets of overhead are utilized. 

The maximum MAC header length is 25 octets denoted by the constant aMaxMACFrameOverhead. 
There is no formal definition of minimum 
overhead within the 2003 standard. The maximum 
supported MAC layer payload is defined by 
aMaxMACFrameSize  in the following formula: 

aMaxMACFrameSize = aMaxPHYPacketSize – 
aMaxMACFrameOverhead = 127 – 25 = 102. 

This definition is significant, as it restricts the 
available room for payload within a packet to 102 
octets by allocating 25 octets to fields within the 
MAC header, regardless of whether those fields 
are used or not. For the typical ZigBee packet 
described in Figure 1, 11 of the maximum 25 
(aMaxMACFrameOverhead) MAC header octets are 
used, leaving the remaining 14 octets to be 
unusable for application data. Thus, the actual 
packet transmitted over the air (including 
preamble, start frame delimiter and frame length 
field) is 119 octets long instead of 133 octets. For 
efficiency, the largest packet must be transmitted.  
Taking into account ZigBee header lengths (15 
octets), the available space for application payload 
is limited to 87 octets (aMaxMACFrameSize  – 15) 
compared to the desired 101 octets as determined 
by maximum physical transmission unit length. 

 
Figure 1.  ZigBee/IEEE 802.15.4  frame formats  
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In September of 2006 a revision to the IEEE 802.15.4 standard, IEEE 802.15.4-2006, was published 
by the Institute of Electrical and Electronics Engineers [3]. IEEE 802.15.4-2006 replaced the 
aMaxMACFrameSize variable with a new pair of variables described below: 

aMaxMACPayloadSize=aMaxPHYPacketSize – aMinMPDUOver head = 127 – 9 = 118 
aMaxMACSafePayloadSize=aMaxPHYPacketSize-aMaxMPDUUn securedOverhead = 127–25 = 102. 

The new pair of variables gives application developers the opportunity to recover the octets unused by 
MAC layer at the expense of backwards compatibility with prior implementations. The first variable, 
aMaxMACPayloadSize , recognizes the minimum MAC header size and only allocates that many octets to 
the header, leaving 118 octets to the MAC payload. This allows for the creation of maximal length 
physical service data frames of 133 octets regardless of the addressing fields used. The second variable 
aMaxMACSafePayloadSize  holds the original 102-octet value of aMaxMACFrameSize  for the purpose of 
notifying developers that MAC payloads of length greater than 102 octets may not be handled properly 
by systems strictly compliant to IEEE 802.15.4-2003. 

The ZigBee Alliance has recognized the addressing flexibility presented in IEEE 802.15.4-2006 and 
incorporated these changes into the latest version of the ZigBee standard released December 1, 2006 [4]. 

IV.  PRACTICAL ESTIMATION OF ZIGBEE THROUGHPUT 

Figure 2 assimilates several procedures from the IEEE 802.15.4 standard specification to illustrate 
how a node must send large (> 18 octets) packets when an ack is required. The first procedure, carrier 
sense multiple access with collision avoidance (CSMA-CA), dictates how 802.15.4 devices shall gain 
access to the wireless channel. The length of time required to execute CSMA-CA and the probability of 
CSMA-CA terminating without granting channel access increase with the activity level. The remaining 
steps of a packet’s transmission are executed if the CSMA-CA procedure grants channel access and are 
assumed to be error free, so they cannot have variable transmission times for a given packet. Throughput 
calculations first estimate the average time required to execute CSMA-CA then calculate the time 
required to complete the remaining four steps of the transmission process for a packet of a given length. 
Practical estimation of throughput in a ZigBee network is governed by the following assumptions: 

• There are no transmission errors resulting in a corrupted or lost data packet. 
• Each data packet requests acknowledgement upon reception. 
• The packet structure and field sizes under analysis are as defined in Figure 1. Specifically, the 

application payload, AppPayload, is equal to 101 bytes. 
• The destination node is a single hop away; routing tables are precompiled. 
• Time is modeled from the radio’s perspective in symbols, which can be converted to seconds by 

dividing by the radio symbol rate of 62,500 symbols per second. 

A. Transmission Phase 1 (CSMA-CA) 

Within the MAC layer, the CSMA-CA procedure dictates how IEEE 802.15.4 devices gain transmit 
access to a wireless channel by first listening to determine if another device is currently transmitting. 
Figure 3 depicts the unslotted portion of the CSMA-CA algorithm, used for non-beacon enabled PANs, 

 
Figure 2.  IEEE 802.15.4 packet transmission procedure with estimated duration 

for Pinactive  = 0.9.  
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as described by the IEEE 802.15.4 standard. Steps (2) and (3) require variable amounts of time to execute 
depending upon channel activity. The value of BE has upper and lower bounds specified to be macMinBE 
(3) to macMaxBE (default 5) by the IEEE 802.15.4 standard. The maximum number of iterations to gain 
channel access is also defined as macMaxCSMABackoffs  (default 4).  These bounds allow the CSMA-CA 
procedure’s correlation to a packet’s transmission to be modeled as the Markov chain in Figure 4. 

If the algorithm does not gain access to the channel within macMaxCSMABackoffs  attempts, a channel 
access failure is declared and the transmission is cancelled. Traversing Markov chain from the ‘TX 
Request’ start state to the ‘Access Failure’ final state yields the probability of a channel access failure. 
For demonstration, this paper shall set Pinactive  to be 0.9 for throughput calculations. 

Paccess_failure  = (1 - P inactive ) macMaxCSMABackoffs  = (0.1) 4 = 0.0001 

With the exception of ‘Access Failure’, each CSMA-CA state has a nonzero symbol time. For this 
estimation we shall consider the average case to obtain results relevant to practical implementations. 
Average delay for a given state in the CSMA-CA procedure can be calculated by multiplying the 
probability of entering the state and the time penalty incurred for visiting that state. Average delay for 
executing an iteration of the CSMA-CA procedure is the sum of the average delays for each state. The 
computation process is performed in the following example: 

The average symbol time for a given CCA stage, CCAi is defined as, 

symbols CCAi = backoff_duration i  + cca_duration = backoff_duration i  + 8 symbols. 

From step (2), let X i  = random(2 BEi - 1) then, 
backoff_duration i = E(X i ) * aUnitBackoffPeriod = E(X i ) * 20 symbols. 

 
Figure 3.  IEEE 802.15.4 CSMA-CA procedure [3]. 

 

Figure 4.  Finite state machine, based upon a Markov chain, representing 
the relation of CSMA-CA to the packet transmit process. 
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Then for a given CCAi, according to the random function, Xi  is a random variable of standard uniform 
distribution with parameter b = 2 BEi  - 1 . Therefore, 

E(X i ) = (2 BEi - 1) / 2. 

The CCA durations are calculated by these means with the following results: 

symbols CCA1 = 78 symbols 
symbols CCA2 = 158 symbols 
symbols CCA3 = 318 symbols 
symbols CCA4 = 318 symbols. 

The symbol time required to traverse the CSMA-CA algorithm and in turn attempt to transmit a single 
packet can be computed given the probability, Pinactive , of declaring the channel to be idle for a given 
CCA operation and the symbol time, symbols TX-Phase2 , required to complete the remaining transmission 
steps of: TX Packet, ACKTurnaround, TX ACK and IFS. Therefore, by traversing the state machine 
transitions, the average time to complete one iteration, of unknown outcome, of the transmission process 
can be calculated as: 

symbols iteration  = CCA 1 + (1-P inactive )*(CCA 2 + (1-P inactive )*(CCA 3 + (1-P inactive )*CCA4)) +  
   symbols TX-Phase2 *P access_granted . 

The number of iterations required for an ‘access granted’ outcome is modeled as the number of 
Bernoulli trials required to obtain a ‘success’ outcome, which is a geometric distribution. The geometric 
distribution requires one parameter, the probability of a success for a given trial, which shall be 
Paccess_granted . Therefore, based on the properties of the geometric distribution, the expected number of 
iterations required to gain channel access is, 

Paccess_failure  = (1-P inactive ) 4 

Paccess_granted  = 1 - P access_failure  = 1 - (1-P inactive ) 4 = 1 – (0.1) 4 = 0.9999 

E(iteration_count) = 1/P access_granted . 

Finally, leaving the average symbol time required for a successful transmission of a single packet, 

symbols transmit  = symbols iteration  * E(iteration_count) = symbols iteration /P access_granted   
symbols transmit  = (CCA 1 + (1-P inactive )*(CCA 2 + (1-P inactive )*(CCA 3 + (1- 

 P inactive )*CCA4)))/P access_granted  + symbols TX-Phase2 . 

This formula can be separated to represent the two distinct transmission phases with the introduction 
of a new variable, symbols CSMA-CA. 

symbols CSMA-CA = (CCA 1 + (1-P inactive )*(CCA 2 + (1-P inactive )*(CCA 3 + (1-
Pinactive )*CCA4)))/P access_granted  

symbols transmit  =  symbols CSMA-CA + symbols TX-Phase2 . 

For Pinactive  = 0.9, symbols CSMA-CA evaluates to, 

symbols CSMA-CA = (78 + (0.1)*(158 + (0.1)*(318 + (0.1)*318)))/0.9 999 = 97.31 symbols. 

B. Transmission Phase 2 (TX Packet) 

The second phase of packet transmission is conditionally executed if the CSMA-CA procedure grants 
channel access. Assuming that no data or acknowledgment packets are lost, the time to execute this phase 
of transmission varies only with respect to the data packet’s size. The largest packet size permitted within 
802.15.4 will afford the highest throughput to overhead ratio so each data packet is assumed to contain 
101 application data bytes plus 32 bytes overhead (133 bytes). The total time required to execute phase 2 
is the sum of its components: 

symbols TX-Phase2  = symbols tx  + symbols turnaround  + symbols tx-ACK  + symbols IFS . 
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1) Transmission Time (TX Data) 
The physical layer transfers packets after assembling them into the PPDU structure. Thus, the physical 

layer concatenates 6 additional octets for a total of 133 octets to be transmitted. The actual symbol time 
required for transmission is: 

length PPDU = 133 bytes 
length symbol  = 4 (bits/symbol) 
symbols tx  = length PPDU (bytes) * 8 (bits/byte) / length symbol  (bits/symbol) 
symbols tx  = 133*8/4 = 266 symbols. 

2) Turnaround Time (ACKTurnaround) 
After the last octet of a packet is received at the destination, the IEEE 802.15.4 standard specifies that 

a node shall require no more than aTurnaroundTime  symbols to switch the RF transceiver from receive 
to transmit mode to transmit an acknowledgement. Thus for the practical case, 

symbols turnaround  = aTurnaroundTime = 12 symbols. 

3) Acknowledgment Transmission Time (TX ACK) 
The transmission time required for an acknowledgement frame is calculated similarly to that of the 

data frame calculated two steps earlier. The one modification of the procedure is the reduction of 
length PPDU to 11 bytes as specified by standard acknowledgment frame format of 5 bytes belonging to 
MAC headers and 6 bytes belonging to PHY headers. 

symbols tx-ACK  = 11*8/4 = 22 symbols. 

4) Interframe Spacing Time (LIFS) 
Since a finite amount of processing time is required for the MAC sublayer to complete a packet’s 

reception, the IEEE 802.15.4 standard has designated an interframe spacing (IFS) period that follows the 
transmission of a data frame. The IFS period can take a minimum value designated by one of two 
constants, aMinLIFSPeriod  or aMinSIFSPeriod  according to the following statement: 

If length MPDU ≤ aMaxSIFSFrameSize 
then,  
symbols IFS  ≥ aMinSIFSPeriod = 12 symbols 
else, 
symbols IFS  ≥ aMinLIFSPeriod = 40 symbols. 

For the scenario under consideration, 

symbols IFS  = aMinLIFSPeriod = 40 symbols. 

C. Total Transmission Time 

Given the calculations completed thus far, the 
average time required for transmission of a single 
packet in a lightly loaded network (Pinactive  = 0.9 ) is 
computed in Table IV..C. The number of times that the 
transmission process can be repeated within a second is 
easily computed given the average transmission symbol 
time, symbols sum. Finally, throughput is computed 
given the average number of packets transmitted per 
second. 

TABLE I.  PACKET TRANSMISSION TIME BREAKDOWN 

Procedure Identifier Symbols Milliseconds 

CSMA-CA symbolsCSMA-CA 97.31 1.56 

TX Packet symbolstx 266 4.26 

ACKTurnaround symbolsturnaround 12 0.19 

TX ACK symbolstx-ACK 22 0.35 

LIFS symbolsIFS 40 0.64 

Sum symbolssum 437.31 7.00 
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packets sec  = rate symbol  / symbols sum = 62,500/437.31 = 142.92 (packets/s) 
throughput kbps  = AppPayload (bytes/packet) * 8 (bits/byte) * packets sec  (packets/s) 
throughput kbps  = 101*8*142.92 = 115.5kbps 

Thus maximum throughput for single hop transmission in a lightly loaded, non-beacon enabled PAN 
is approximately 115.5kbps. This includes allowances for overhead created by ZigBee packet headers; 
therefore, it is an appropriate estimate for an upperbound of throughput in a ZigBee wireless network. 

D. Effect of Channel Activity on Throughput 

Our throughput estimation method can be performed for any channel activity level as depicted in 
Figure 5, which displays a set of curves representing the degradation in maximum throughput with 
increased channel activity. The accuracy of such predictions is evaluated using NS-2 simulations in 
Section V. It can be observed, from Figure 5, that maximum throughput reaches approximately 120kbps 
for IEEE 802.15.4-2006 acknowledged transmissions when Pinactive approaches 1.  

V. SIMULATED ZIGBEE THROUGHPUT 

Version 2.28 or later of the network simulator NS-2 is equipped with an IEEE 802.15.4 PHY/MAC 
simulation module provided by Zheng and Lee [5][6]. Ramachandran [7] has published a set of 
modifications and accuracy improvements for the IEEE 802.15.4 module in NS-2, which are also applied 
to the experimental platform. This module can be used to simulate throughput in a ZigBee network 
because for single hop throughput purposes, ZigBee is merely a set of headers placed above the 
application payload in IEEE 802.15.4 data packets.  

Verification of the simulation platform indicated that the IFS period following a packet’s transmission 
was not implemented at the transmitting node as per IEEE 802.15.4. The PHY/MAC layers from Zheng 
and Lee implement the IFS period at the receiver’s MAC layer as a delay between the reception of the 
packet and the receipt notification to the upper layer. This implementation of the delay is consistent with 
the reason for incorporating an IFS delay into the standard. However, this delay does not enforce the 
condition imposed by standard to prevent nodes from overloading their neighbors. Our simulations 
include the insertion of the appropriate IFS delay between successive transmissions from a single node.  

The network topology used for the simulation consists of two nodes (labeled {0} and {1}) separated 
by a distance of 25 meters. The DumbAgent routing protocol is specified because only single hop 
transmissions are considered. Node {0} is started first as non-beaconing PAN coordinator, followed by 
node {1} as a full function device. At time 30 (seconds) node {1} constructs a constant bit rate (CBR) 
traffic flow to node {0}.  

CBR traffic in NS-2 requires two parameters, packet size and packet rate. The packet size designated 
for the CBR flow is 116 bytes. (101 bytes of application payload plus 15 bytes of ZigBee headers; see 
Figure 1.) To ensure that maximum throughput is achieved, the packet generation rate is set to be higher 
than what IEEE 802.15.4 can service. The simulated link layer buffers packets that cannot be transmitted 
immediately. When the link layer queue at node {1} is full, no outgoing packets are accepted and 
attempts to schedule new packets are dropped until a pending packet transmission is completed. The 
packet rate set for simulation is a single packet every 3.0 milliseconds, less than half of the estimated 7.0 
milliseconds required for complete transmission. This packet rate is selected for its ability to expose 
potential flaws in the throughput estimation technique that could result in a significantly lower throughput 
estimation than actual capabilities. 

The simulation is halted after 90 seconds of CBR activity. Throughput is obtained by parsing the trace 
file with two procedures. First dropped packets are eliminated. Next, the length of simulated ZigBee 
headers is subtracted from the CBR packet sizes to determine actual application payload in each packet. 
Cumulative application payload transferred is then counted by procedure two. Throughput for a single 
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hop, non-beacon enabled wireless network reached a maximum of 120kbps, matching the estimation 
derived in Section IV. Throughput for various channel activity levels is simulated by modifying the CCA 
procedure to return a true result only when the channel is detected to be idle and a probabilistic condition 
associated with the desired channel activity level (Pinactive ) is satisfied. Overall accuracy of the simulation 
platform and our estimations is evaluated by comparing the graphs, which depict throughput versus 
channel activity level, obtained from estimations in Figure 5 to the graphs obtained from NS-2 
simulations in Figure 6. Figure 6 contains measured/calculated data points at the 10% intervals for 
Pinactive . Indistinguishable results testify to the accuracy of the two devised throughput measurement 
techniques and the feasibility of such throughput levels. 

VI.  ZIGBEE HARDWARE THROUGHPUT 

In Phase 3, we measure maximum attainable throughput using ZigBee compliant hardware. The 
prospects for coaxing hardware to reach maximum throughput in excess of 120kbps appear to be slim 
given the findings presented by Ashton [8]. Ashton sought to expose a baseline for performance in a 
ZigBee network by considering the correlations between the number of hops, latency and throughput. 
Although Ashton’s results are specific to the following platform, the experiment is indicative of ZigBee’s 
performance because the platform is fully compatible with the ZigBee standard. Ashton measured 46kbps 
to be the maximum single hop throughput using the following assumptions and experimental setup: 

• Software application is not specially configured for purposes of throughput measurement. 
• Application payload is equal to 91 bytes. 
• Ember Corporation EM250 System on Chip (SoC), integrated radio and 16-bit microcontroller 

chip, devices realize ZigBee hardware platform. 
• No security (encryption) is in use. 

A. UTD Test Model 

In disjunction with previous tests, our hardware implementation assumes the following: 

• Software application can be specially configured for purposes of throughput measurement. 
• Application payload is equal to 101 bytes. 
• Ember Corporation EM2420 ZigBee compliant radio transceiver is paired with Atmel AVR based 

ATmega128L 8-bit microcontroller provided by EM2420 developer kit, which is based on a 
functionally separated two-chip design (Figure 8). 

• No security (encryption) is in use. 
• The non-beaconing, mesh based, IEEE 802.15.4 communication mode is utilized. 
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In notable contrast between the two models, the first 
assumption for our model is valuable because enhancements 
observed by refining software configurations can provide insight 
essential for designing better performing systems. The procedure 
written to test maximum throughput contains five steps illustrated 
by the flowchart in Figure 7. Initial ZigBee compliant hardware 
measurements of throughput using ZigBee messages yield a result 
of 53kbps. At this point, it is certain that radio airtime is not being 
utilized to its fullest potential as described by practical 
estimations. Software refinements are necessary to enhance 
throughput. 

B. Refinement 1: Remove excess functions 

First, we check if all non-transmission related sources of delay 
can be eliminated. To eliminate these factors, steps (1), (2), (3) 

and (5) need only to be executed once for a given test session. Step (4) shall remain in a loop repeatedly 
scheduling the same packet buffer for transmission. In this configuration, no processing time is spent 
allocating, filling or deallocating space for packets. This modification resulted in a nearly 2x increase to 
110kbps. The throughput increase seems to indicate that at least one of the isolated steps is consuming a 
large quantity of processing time. Step (2) is easily eliminated from the possible causes by only running it 
once per execution while leaving (1), (3), (4) and (5) in the throughput loop. The result of this test was 
equal to that of the original 53kbps. Thus, step (2) is not the bottleneck. Other combinations of removed 
steps cannot be tested because of finite memory limitations. The 110kbps throughput obtained using this 
refinement is considered the standard as the highest throughput that can be achieved using this hardware 
platform in the given experimental environment. The 10kbps gap 
between estimated throughput and this experimental value is 
projected to be due to a combination of environmental factors 
(noise, interference, etc.) and intrinsic hardware platform 
limitations (processor/RF transceiver latency, etc.). The origins 
of possible hardware platform limitations are investigated in the 
remaining refinements. 

C. Refinement 2: Decrease interrupt service latency 

On completion of a transmission, the Ember EM2420 radio 
notifies the AVR microcontroller of the event with an interrupt. 
The interrupt service routine is designed to quickly set a flag 
indicating the change in state and then resume user application. 
The user application is responsible for calling an interrupt 
management procedure that checks the status of various flags to 
perform actions based upon recent interrupts. In the case of a 
‘transmission complete interrupt’, the radio interrupts the AVR 
and a corresponding flag is set. Upon the next application call of 
the interrupt management procedure, the status of the completed 
transmission is relayed to the application and scheduling buffers 
are processed to begin the next packet transmission. Previous 
throughput measurements had one such call to the interrupt 
management procedure per throughput loop iteration. This 
refinement measures throughput improvement by calling the 
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Figure 7.  Throughput measurement data send routine. 
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interrupt manager two or more times per throughput loop iteration. A maximum throughput of 80kbps 
occurred with two interrupt manager calls per loop iteration. This refinement is highly desirable because 
it produces a significant throughput improvement and is minimally invasive to the application. However, 
refinement 2 falls well short of the previously discovered throughput maximums. ZigBee does not dictate 
the manner in which interrupts shall be handled so this discussion is based upon our ZigBee compliant 
hardware platform. However, the lessons learned from this refinement are needed to understand the 
effectiveness of refinement 3 and provide useful insight to the design of throughput efficient wireless 
implementation. 

D. Refinement 3: Increase available packet buffers 

Refinement 3 is invasive to the application to gain an understanding of the bottleneck that limits 
throughput to 80kbps for unique packets while allowing 110kbps for repeated transmission of the same 
packet. In the Ember implementation of the ZigBee stack, packet buffers consist of a series of linked 32-
byte buffers. Packet buffers that are large enough to store an entire packet are created in step (3) by 
linking the necessary number of link buffers in a linked list like structure. Relatively tight memory 
constraints present in embedded microcontrollers dictate strict limits on the number of link buffers that 
can be allocated. A packet of maximum size requires five link buffers for packet storage plus overhead. 
The default configurations used in previous tests allocate 24 32-byte linked buffers, thereby buffering a 
maximum of 4 packets. In this configuration, step (1) of the throughput loop may find insufficient 
memory space to create and schedule a new packet for transmission. 

Refinement 3 increases the buffer count to 45 32-byte buffers, therefore holding a maximum of 9 
packets, at which point step (1) empirically yields all ‘yes’ results. The desired outcome is for the 
application to schedule more packets simultaneously, reducing the probability that the radio will have idle 
time. Refinement 3 is applied in addition to refinement 2. Increasing the number of available link buffers 
drastically increases application throughput to 108kbps. This refinement nearly matches the 
effectiveness of refinement 1, which allocated a single static packet buffer. Thus, four completely 
buffered packets are insufficient to prevent idling of the radio due to latency in deallocating packet 
buffers. This problem is explored next. 

1) Buffer allocation/deallocation process 
Each packet buffer is allocated using a reference counter initially set to one by step (3). Step (4) 

increments the reference count to indicate that the buffer is needed by the radio. Step (5) then decrements 
the reference count to signal that the application is finished with the packet buffer. At this point, the 
reference count is greater than zero so the buffer is unavailable for reallocation. Upon completion of the 
transmission, the radio issues an interrupt to the microcontroller. The microcontroller interrupt service 
routine sets a transmission complete flag. On calling the interrupt management routine, the application is 
notified, via callback function, of the completed packet transmission and is passed a reference to the 
original packet buffer. The application may perform additional processing now. On returning from the 
application callback the interrupt management routine decrements the reference count of the packet 
buffer to zero. The individual links of the packet buffer are now available for subsequent allocation. This 
process shows that packet buffers are not freed immediately after transferring the packet to the radio for 
transmission. The buffers are freed at the end of an application call to the interrupt management routine, 
which bears no direct correlation to the time at which transmission is completed. 

2) Solutions 
Refinement 3 is an undesirable long-term solution. The 45 buffers with overheard occupy nearly 45% 

of the AVR’s 4KB internal data memory. Three solutions are proposed to alleviate the effects of the 
packet deallocation bottleneck. 
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1) Tightly couple packet deallocation with the interrupt service routine responsible for servicing 
interrupts from the radio. Immediately upon receiving an ‘acknowledgment received’ or ‘transmission 
complete’ interrupt, deallocate the packet buffer.  

2) Create additional packet buffering capabilities at the radio transceiver. The application may not 
require access to a packet’s contents after it schedules the packet for transmission. It would be 
advantageous for the radio to autonomously handle all retransmission attempts. With this, the 
microcontroller can deallocate a packet buffer as soon as a copy is transferred to the radio. 

3) Add an external RAM to the hardware design. A small external RAM will add little cost to 
hardware designs while providing a large amount of space suitable for storing packets.  

E. Delivery order 

Since refinements 2 and 3 result in maximum throughput, these refinements are applied as the standard 
system. Unique sequence numbers are placed in the first two bytes of payload for every data packet in the 
throughput measurement. These sequence numbers provide a means for detecting out of order delivery 
and failed delivery of packets when repeating throughput tests. Subsequent tests indicated that for the 
network model in this paper all scheduled packets arrived at the destination, in order. Repeated 
experiments reliably produced the same result. 

VII.  SUMMARY AND CONCLUSIONS 

We limited our study to two ZigBee devices. The network may now be expanded to many participants 
to determine 1) the effect of multi-hop paths on throughput, 2) reliability in a congested network, 3) 
delivery order, 4) latency and 5) maximum network throughput. Our results show that these parameters 
can be accurately measured using a properly programmed hardware platform or by simulation. 

A final summary of all measurable throughput performance characteristics is provided for comparison 
in Figure 9. The first and third columns display clear throughput improvements achieved using off the 
shelf hardware designs paired with software customizations. The equality of estimated versus simulated 
throughput measurements across all four scenarios argues for both techniques’ accuracy. Experiments 
indicate that the maximum potential throughput has been reached by implementing the techniques 
described in this paper. Other designs stand to increase throughput and benefit from this work by 
acknowledging the critical design criteria as observed within this paper and consisting of interrupt service 
times, available memory and processor-transceiver communication latency. 

The value of these experiments comes from 
establishing an analytical and empirically verified 
upperbound for actual application throughput of a 
ZigBee network. The theoretical foundations 
presented here provide a means for system 
designers to evaluate their design with regards to 
its fulfillment of ZigBee’s maximum potential. 
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